Radial/elliptical Basis Function Neural Networks for Timbre Classification
نویسندگان
چکیده
This paper outlines a RBF/EBF neural network approach for automatic musical instrument classification using salient feature extraction techniques with a combination of supervised and unsupervised learning schemes. 829 monophonic sound examples (86% Siedlaczek Library [2], 14% other sources) from the string, brass, and woodwind families with a variety of performance techniques, dynamics, and pitches were used for the development of feature extraction, network initialization algorithms, and training of the neural networks resulting in approximately 71% individual instrument and 88% instrument family classification. A novel approach for automatically fine-tuning the system using the Nearest Centroid Error Clustering (NCC) method which determines a robust number of centroids is also discussed.
منابع مشابه
Nearest Centroid error Clustering for radial/elliptical Basis Function Neural Networks in Timbre Classification
This paper presents a neural network approach for classification of musical instrument sounds through Radial and Elliptical Basic Functions. In particular, we discuss a novel automatic network fine-tuning method called Nearest Centroid Error Clustering (NCC) which determines a robust number of centroids for improved system performance. 829 monophonic sound examples from the string, brass, and w...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملAn elliptical basis function network for classification of remote sensing images
An elliptical basis function (EBF) network is proposed in this study for the classification of remotely sensed images. Though similar in structure, the EBF network differs from the well-known radial basis function (RBF) network by incorporating full covariance matrices and uses the expectation-maximization (EM) algorithm to estimate the basis functions. Since remotely sensed data often take on ...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کامل